Chapter 1

SCENARIO-BASED ENGINEERING OF MULTI-
AGENT SYSTEMS

Jon Whittle
QRSS / NASA Ames,

jonathw@email.arc.nasa.gov

Johann Schumann
RIACS / NASA Ames,

schumann@email.arc.nasa.gov

1. Introduction

A recent development in software engineering is the paradigm of agent-
oriented software engineering (AOSE) — see (Wooldridge and Ciancarini,
2001) for a survey of the state of the art. Roughly speaking, AOSE is the
engineering of systems that are built from distributed, coordinating sets
of agents. Most work in AOSE has been extensions of object-oriented
analysis and design methodologies with emphasis placed on features that
are particular to agent-based systems, such as complex coordination pro-
tocols, a high degree of concurrency and autonomy. An independent
area that has also received a lot of interest is that of scenario-based soft-
ware engineering (SBSE) — see (SBSE, 2000). Scenarios are traces of
interactions between system components or its users. They are usually
represented as abstract execution traces and serve as an interlingua be-
tween customers, system developers and test engineers. SBSE explores
the ways in which scenarios can be used in the software development
process and has primarily been associated with object-oriented software
methodologies.

The use of scenarios is particularly suited to the development of agent-
oriented systems. Such systems typically involve complex interactions
between multiple coordinating agents. The interaction protocols for
these systems can be very tricky to engineer. This chapter will show

2

how some new techniques for utilizing scenarios in software engineer-
ing, reported in (Whittle and Schumann, 2000) and extended here, can
be applied to AOSE. The focus is on modeling and analyzing agent
interaction protocols and excludes discussion of how to model agents’
beliefs, desires and intentions. Qur methodology thus aims toward ap-
plications with weak agency where agent behavior can be much more
pre-determined during design time (cf. Wooldridge and Jennings, 1995;
for a definition of strong agency, see 7).

Two principal ways of extending the current use of scenarios will be
presented. Firstly, scenarios can be used in forward engineering, i.e.,
using the scenarios as a guide in developing system design models or
code. Although many commercial software development environments
provide forward engineering support in the form of stub code genera-
tion from design models, there is currently no available technology that
can provide automated support in forward engineering design models
from scenarios. In this chapter, an algorithm will be presented that can
(semi-)automatically generate initial design models from a collection of
scenarios. Secondly, scenarios can be used in reverse engineering, i.e.,
extracting a design model from existing code. The purpose of reverse
engineering is to recover a faithful, high-level design of a piece of soft-
ware in the case that the software source code is not available or is
poorly documented. Execution scenarios can be obtained by executing
an instrumented version of the code that outputs trace information to a
log file. These scenarios can then be used as the basis for developing a
design model.

In the context of agent-based systems, scenarios can be used to de-
velop the following kinds of design models:

m agent interaction protocols, describing the complex interactions
between agents when they are placed in the same environment;

= agent skeletons (Singh, 1998a) or abstract local descriptions of
agents in terms of events that are significant for coordination with
other agents;

m detailed models of the internal behavior of an agent;

In this paper, we focus on the use of statecharts Harel, 1987 to rep-
resent the design models. A statechart is a finite state machine extend-
ed by notions of hierarchy and orthogonality (for concurrent behavior).
Their event-driven nature make statecharts interesting for agent-based
systems. The use of scenarios in forward-engineering is already quite
common in the development of object-oriented systems and forms part
of many OO methodologies, namely those that are based on use cases

Scenario-based Engineering of Multi-agent Systems 3

(Rosenberg and Scott, 1999). The idea is that use cases (which can be
considered as a collection of scenarios) are used in the early stages of
software design to map out the behavioral requirements of a software
artifact. Scenarios, however, give a global view of a system in terms of
the interactions between sub-components. For implementation, a model
of the individual components is required, so the scenarios are used as a
guide in developing the local model of each sub-component. Unfortu-
nately, this transition from global scenarios to local models is currently
left grossly underspecified in state of the art methodologies.

We have developed a technique for translating scenarios into behav-
ioral models (semi-)automatically. Given a collection of scenarios, plus
additional constraints that may be specified by the user, our algorithm
synthesizes a behavioral model for each agent involved in the interaction.
These generated models will be either interaction protocols, skeletons or
detailed models, depending on the information represented in the input
scenarios.

A number of other approaches have been developed for translating
from scenarios to behavioral models (e.g., Khriss et al., 1999; Mannist6
et al., 1994; Leue et al., 1998; Somé and Dssouli, 1995), but our approach
has a number of advantages, namely:

m scenarios will in general overlap. Most other approaches cannot
recognize intersections between scenarios. Our approach, however,
performs a justified merging of scenarios based on logical descrip-
tions of the communications between agents. The communication
scenarios are augmented using a constraint language and identi-
cal states in different scenarios are identified automatically based
on these constraints. This leads to models both vastly reduced in
size, and also corresponding more to what a human designer might
produce.

m scenarios will in general conflict with each other. Our algorithm
detects and reports any conflicts in the specification of the com-
munications.

m the models generated by our algorithm are highly structured. Much
of this structure is detected automatically from the communication
specifications. Additional structure can be deduced from user-
specified abstractions. This leads to generated models that are
human-readable, reusable and maintainable, not just flat, struc-
tureless models.

The model synthesis algorithm introduced in the preceding para-
graphs can also be used in a reverse engineering context. Reverse engi-

4

neering a model from an existing system or prototype is often a necessary
process for understanding the operation of the system and how it inter-
acts with other components. This is particularly true for agent-based
systems in which agent components may exhibit emergent behaviors not
explicitly called out in the software. Reverse engineering using scenarios
can be undertaken as follows. Simulations of a working prototype can be
instrumented to output event traces, or traces of communication events
between agents. These traces, possibly abstracted to remove low-level
implementation details, can be considered as scenarios. By running a se-
ries of simulations, a collection of scenarios are obtained which can then
be used as input to the synthesis algorithm described in the previous
paragraph. The result is a model of the interaction protocol in the ex-
isting prototype. Such a process could be used to derive abstract models
of an existing system so that it could be analyzed for conformance to
certain properties.

In order to present these ideas in a concrete context, the Unified
Modeling Language (UML), (OMG, 2001) will be used as a language in
which to express the scenarios and design models. UML is a widely used
industry-standard modeling language consisting of a number of graphical
notations as well as a textual constraint language, the Object Constraint
Language (OCL) (Warmer and Kleppe, 1999). Recent extensions have
been made to UML to better support the design of agent-based systems.
UML sequence diagrams will be used to represent scenarios, statecharts
will be used as design models, and class diagrams with OCL constraints
will be used to give the static structure of a system. These notations
will be introduced in the next section.

Section 2 introduces the basics of AOSE and SBSE. It also gives back-
ground information on UML, including an example that will be used to
illustrate the algorithms in the rest of this chapter. Section 3 describes
the methodology for using the automatic synthesis algorithm which is
itself described in section 4. Section 5 discusses the reverse engineering
aspect and conclusions are drawn in section 6.

2. Background

This section briefly describes existing work in Agent-Oriented Soft-
ware Engineering (AOSE) and Scenario-based Software Engineering
(SBSE). Sections 2.1 and 2.2 describe AOSE. Previous work on syn-
thesis in SBSE is presented in section 2.3.

AOSE is concerned with the development of methodologies for en-
gineering systems that are made up of a collection of agents. Most
work in AOSE has grown out of work on object-oriented methodologies.

Scenario-based Engineering of Multi-agent Systems 5

This is due to the fact that the development of large-scale agent-based
software requires modeling methods and tools that support the entire
development lifecycle. Agent-based systems are highly concurrent and
distributed and hence it makes sense to employ methodologies that have
already been widely accepted for distributed object-oriented systems.
Indeed, agents can be viewed as “objects with attitude” (Bradshaw,
1997) and can themselves be composed out of objects. On the other
hand, agents have certain features not possessed by objects — such as
autonomy, the ability to act without direct external intervention; and
cooperation, the ability to independently coordinate with other agents
to achieve a common purpose. The precise nature of the relationship
between objects and agents is as yet unclear. However, we anticipate
that the use of AOSE (perhaps with further extensions) for modeling
agent-based systems will increase.

For a full description of the state of the art in AOSE, see (Wooldridge
and Ciancarini, 2001). The discussion here is limited to a small number
of examples.

2.1 UML and AOSE

Agent UML (AUML, 2001) is an attempt to extend the Unified Mod-
eling Language (OMG, 2001) with agent-specific concepts and notations.
The premise of Agent UML is that agents are an “extension of active ob-
jects, exhibiting both dynamic autonomy (the ability to initiate action
without external invocation) and deterministic autonomy (the ability to
refuse or modify an external request)” (Odell et al., 2001). Agent UML
attempts to augment UML to support these extensions.

In order to give an introduction to UML, an example is now present-
ed. This example will also serve as ongoing example to illustrate the
model synthesis algorithm. The example is that of an automated load-
ing dock in which forklift agents move colored boxes between a central
ramp and colored shelves such that boxes are placed on shelves of the
same color. The example is presented as a case study in (Miiller, 1996)
of a three-layered architecture for agent-based systems, in which each
agent consists of a reactive, a local planning and a coordination layer.
Each layer has responsibility for certain actions: the reactive layer re-
acts to the environment and carries out plans sent from the planning
layer; the planning layer forms plans for individual agent goals; and the
coordination layer forms joint plans that require coordination between
agents. We have translated part of this example into UML as a case
study for our algorithm. Figure 1.1 gives the static structure of part
of the system, represented as a UML class diagram. Each class can be

6

annotated with attributes or associations with other classes. coordWith
describes whether an agent is currently coordinating its actions with an-
other agent (0. .1 is standard UML notation for multiplicity meaning 0
or 1), and coordGoal gives the current goal of this other agent. Agent
interaction is based on a leader election protocol which selects an agent
to delegate roles in the interaction. leader describes whether an agent
is currently a leader. The filled diamonds in the class diagram represent
aggregation (the ‘part-of’ relationship).

. carries Box
reactive 0.1
1
hasBox
Agent 0.1
nane: String
planning L | X I nt eger
——4@ vy: Integer hasAgent
orient:enun{s,w,n, e} 0..1

gri pper: enun{ up, down}

hands: enun{ open,
cl osed}

1 coordWth
1 0..1 Square
coordinate
| eader : Bool ean
coor dGoal : haLSheI f

enun{ par k, 0..1
boxToShel f,
shel f ToRanp}

Figure 1.1. The loading dock domain

Figures 1.2, 1.3 and 1.4 are sample UML sequence diagrams (SDs) for
interaction between two agents. SD1 is a failed coordination. Agent|[i]
attempts to establish a connection with Agent[j], but receives no re-
sponse!. So it moves around Agent[j]. In SD2, the move is coordinated,
and SD3 shows part of a protocol for Agent[j] to clear a space on a
shelf for Agent[i]. Note that these are actually eztended sequence dia-
grams. ‘boxShelfToRamp’ is a sub-sequence diagram previously defined
and ‘waiting’ is a state explicitly given by the user. More will be said
about extended SDs in Section 4.4.2.

Agent UML (AUML) extends UML by making recommendations as
to how to use UML to model agents and by offering agent-specific ex-
tensions. Work so far has concentrated on modeling agent interaction
protocols. AUML suggests the use of UML sequence diagrams for mod-

Scenario-based Engineering of Multi-agent Systems

Agent[i]:: |Agent[i]:: ||Agent[i]:: | Agent[j]:: |Agent[j]:: ||Agent[j]::
coordinate planning reactive coordinate planning reactive
encounterAgent(j,p) lencounterAgent(,q)
—encounterAgent(j,p) encounterAgent(i,q)
requestCoord
grantCoord
sendGoal (park)
]tm(S)
endCoard
moveAround
IF [orient=e and nFree()=true]
turn(left)
moveA head()
turn(right)
gotol andmagk(p)
Figure 1.2. Agent Interaction (SD1).
Agent[i]:: |Agent[i]:: ||Agent[i]:: ||Agent[j]:: |Agent[j]:: ||Agent[j]::
coordinate planning reactive coordinate planning reactive
encounterAgent(j,p) lencounterAgent(,q)
—encounterAgent(j,p) encounterAgent(i,q)
requestCoord
grantCoord
sendGoal (park)
sendGoal (hoxTaShelf)
j electleadet()] electl eaddr()
isLeader
moveAround
|F[orient=e and nFree()=true]
turn(left)
moveAhead()
turn(right)
gotoL andmark(p)
T endCoord

Figure 1.3. Agent Interaction (SD2).

Agent][i]:: Agent[i]:: Agent][i]:: Agent[j]:: Agent[j]:: Agent[j]::
coordinate planning reactive coordinate planning reactive
shelfFull
scanForAgents()

nearAgent(Agent[j])
nearAgent(Agent[j])

blacked
requestCoord

grantCoord

sendGoal (hoxTaShdf)

dGoal (shelf ToRamp)

] electl eade()] dectl eadel()

isL eader

withdraw

IF [lorient=n]
turn(right)
moveAhead()

isl eader

boxShelf[ToRamp

Figure 1.4. Agent Interaction (SD3).

eling interactions among agents. The main difference between AUML
and UML sequence diagrams is that in UML the arrows in a sequence
diagram represent messages passed between objects. In AUML, the ar-
rows are communication acts between agents playing a particular role.
In addition, AUML introduces additional constructs for supporting con-
current threads of execution in sequence diagrams.

Design models in UML are often expressed as UML statecharts (see
Figure 1.14). A statechart is an ideal graphical notation for expressing
event-driven behavior as typically found in agent-based systems. Stat-
echarts are finite state machines (FSMs) augmented with notations for
expressing hierarchy (multiple levels of states with composite states con-
taining collections of other states) and orthogonality (composite states
separated into independent modules which may run concurrently). Tran-
sitions in a statechart describe the links between different states and are
labeled in the form e/a where e is an event that triggers the transition
to fire and ¢ is an action that is executed upon firing. Guards are also
allowed on transitions but will not be discussed in this chapter. State-
charts are a good way of presenting large, complex finite state machines
since the structuring mechanisms allow information to be hidden as nec-
essary.

In the description of the synthesis algorithm in Section 4, interaction
scenarios will be expressed as sequence diagrams, behavioral models as

Scenario-based Engineering of Multi-agent Systems 9

statecharts — hence, the synthesis algorithm translates sequence dia-
grams to statecharts.

2.2 AOSE Methodologies

AUML (and similar approaches such as MESSAGE/UML (Caire et al.,
2001)) describe extensions to UML and also suggest methodologies for
developing agent-based systems. Other approaches also exist, however.
The Gaia methodology (Wooldridge et al., 1999) advocates a process
of refinement of high-level requirements into concrete implementations,
and is based on the FUSION model for OO systems (Coleman et al.,
1994). Gaia also includes agent-specific concepts such as roles that an
agent may play. Each role is defined by four attributes: responsibilities,
permissions, activities and protocols. Protocols are interaction patterns
(with particular implementation details abstracted away) and are sim-
ilar to FUSION scenarios. A protocol definition consists of a purpose,
an initiator (role responsible for starting the interaction), a responder
(roles with which the initiator interacts), inputs (information used by
the initiator), outputs (information supplied by/to the responder dur-
ing the interaction) and processing (a textual description of processing
the initiator performs). Gaia has its own diagrammatic notation for
expressing interaction protocols.

The final methodology we will mention is Interaction Oriented Pro-
gramming (IOP) (Singh, 1998b). IOP is mainly concerned with de-
signing and analyzing the interactions between autonomous agents. It
consists of three main layers: coordination, commitments and collabo-
ration. Coordination deals with how agents synchronize their activities.
IOP specifies agents by agent skeletons which are abstract descriptions of
agents stating only aspects that are relevant to coordination with other
agents. (Singh, 1998b) describes a manual procedure for deriving agent
skeletons from conversation instances between agents. Conversations
are represented as Dooley graphs which are analyzed by the developer
to separate out the different roles in the conversation. From this in-
formation, agent skeletons can be derived that are consistent with the
conversation instances. In many ways, this approach is similar to ours of
generating behavioral models from scenarios. However, our procedure is
automated and has the advantages already stated in the Introduction.

2.3 From Scenarios to Behavioral Models

There have been a number of recent attempts at generating specifica-
tions from scenarios. Our work stresses the importance of obtaining a
specification which can be read, understood and modified by a designer.

10

Many approaches make no attempt to interleave different scenarios.
(van Lamsweerde, 1998) gives a learning algorithm for generating a
temporal logic specification from a set of examples/counterexamples ex-
pressed as scenarios. Each scenario gives rise to a temporal logic formula
G; and scenario integration is merely |J; G; augmented with rules for
identifying longest common prefixes. However, this does not correspond
well to what a human designer would do, as it does not merge states
lying beyond the common prefix.

A more effective integration of scenarios necessitates some way of iden-
tifying identical states in different scenarios. The solution to this in
(Khriss et al., 1999) is to ask the user to explicitly name each state in the
finite state machine (FSM) model generated from a scenario. Different
states are then merged if they have been given the same name. This
approach requires a good deal of effort from the user, however. The
SCED tool (Méannisto et al., 1994) generates FSMs from traces using
the Biermann-Krishnaswamy algorithm (Biermann and Krishnaswamy,
1976). This algorithm uses backtracking to identify identical states in
such a way that the final output FSM will be deterministic. As a re-
sult, there is no use of semantic information about the states and the
algorithm ultimately may produce incorrect results by identifying two
states that are in fact not the same. In addition, designers will often
introduce non-determinism into their designs which will only be resolved
at a later implementation stage. Hence, the insistence on determinism
is overly restrictive. A successor of SCED, the MAS system (Systd,
2000), applies a highly interactive approach to the problem of identify-
ing same states. During synthesis, MAS queries the user whether certain
proposed scenarios should be integrated into the generated FSM. MAS
chooses generalizations of the set of input scenarios to presented to the
user in this way. In practice, however, it is likely that the user will be
overwhelmed by the large number of interactive queries.

(Leue et al., 1998) tackles the problem of integration by requiring
that the user gives an explicit diagram (a high-level Message Sequence
Chart) showing the transitions from one scenario to the next. This
merely shows, however, how the start and end points of different sce-
narios relate. There is no way to examine the contents of scenarios to,
for example, detect interleavings or loops. (Glinz, 1995) follows a simi-
lar approach, essentially using an AND/OR tree instead of a high-level
Message Sequence Chart.

The work closest to our own is described in (Somé and Dssouli, 1995)
where timed automata are generated from scenarios. The user must pro-
vide message specifications with ADD and DELETE lists which maintain

Scenario-based Engineering of Multi-agent Systems 11

a set of currently valid predicates in a STRIPS-like fashion. States are
then identified if the set of valid predicates is the same.

The ability to introduce structure and hierarchy into the generated
FSM is crucial if user modifications must be made. (Khriss et al., 1999)
allows the limited introduction of hierarchy if the structure is explic-
itly represented in the scenarios (e.g., concurrent threads expressed in
a collaboration diagram lead to a statechart node with two orthogonal
subnodes). However, structure beyond that present in the scenarios must
be introduced manually. Our work extends this approach by introduc-
ing hierarchy where the structure is deduced from other UML notations,
such as a class diagram or from a domain model.

3. Forward Engineering UML Statecharts from
Sequence Diagrams

An increasingly popular methodology for developing object-oriented
systems is that of use case modeling (Rosenberg and Scott, 1999), in
which use cases, or descriptions of the intended use of a system, are
produced initially and are used as a basis for detailed design. Each use
case represents a particular piece of functionality from a user perspective,
and can be described by a collection of sequence diagrams. (Rosenberg
and Scott, 1999) advocate developing the static model of a system (i.e.,
class diagram) at the same time as developing the sequence diagrams.
Once this requirements phase has been completed, more detailed design
can be undertaken, e.g., by producing statecharts.

This approach easily fits into popular iterative lifecycles. In contrast
to the classical waterfall model where each individual design phase (re-
quirements, design, coding, testing) is only carried out once, the phases
in the iterative model are executed multiple times, until the final product
is reached. Because of the focus on the final product, one can consider
the software phases spiraling down to the product, hence such a process
is also called a spiral model. A typical process as it might be used for
an object-oriented design of agents usually has a number of phases as
shown in Figure 1.5. After the inception phase where the first project
ideas (and scenarios) are born, requirements are refined during the elab-
oration phase. In a highly iterative loop, the software is designed and
implemented in this and the construction phase. Finally, efforts to fi-
nalize, test, and maintain the software are undertaken in the transition
phase. Figure 1.5 also depicts which UML notations are typically used
during which phase.

We leverage off this iterative approach and focus on the transition be-
tween requirements and design (elaboration and early implementation

12

phase). From a collection of sequence diagrams, plus information from a
class diagram and user-specified constraints, a collection of statecharts
is generated, one for each class (Figure 1.6). Support for iteration is ex-
tremely important — it is not expected that the designer gets the class
diagram, sequence diagrams, or constraints correct first time. On the
contrary, sequence diagrams will in general conflict with each other or
with the constraints. The sequence diagrams can also miss important
information or be ambigous. Our methodology supports refinements,
debugging, and modification of the synthesized artifacts and automat-
ically updates the requirements accordingly. This “upwards” process
(Figure 1.6) then facilitates stepwise design, refinement, and debugging
of agent designs.

Although we will be focusing mainly on the synthesis part of this pro-
cess, we will briefly describe how the automatic update of requirements
is accomplished. Furthermore, we will demonstrate how specific parts
of our approach (e.g., consistency check and introduction of hierarchy)
can be used to support this iterative design process.

Usecase
Class diagram
Seq Diagram
Statechart
Code

IN- ELA- CONSTRUCTION TRANS-
CEPTION BORATIO! ITION

Figure 1.5. Phases of a software lifecycle and UML notations typically used during
each phase

3.1 OCL specification

The lack of semantic content in sequence diagrams makes them am-
biguous and difficult to interpret, either automatically or between differ-
ent stakeholders. In current practice, ambiguities are often resolved by
examining the informal documentation but, in some cases, ambiguities
may go undetected leading to costly software errors. To alleviate this
problem, we encourage the user to give pre/post-condition style OCL
specifications of the messages passed between objects. OCL (Warmer
and Kleppe, 1999) is part of the UML standard and is a side-effect free
set-based constraint language. These OCL specifications include the
declaration of state variables, where a state variable represents some
important aspect of the system, e.g., whether or not an agent is coordi-

Scenario-based Engineering of Multi-agent Systems 13

- —I_HRequirements

context enter:
pre: cardln=0;
post: Cardin = 1

"
il

specification of
requirements
communication with

customer o
automatic i automatic

check and update synthesis

Design

o

e - =[]
o ="

refinements
modifications
debugging

Figure 1.6. Iterative design of statecharts from requirements

nating with another agent. The OCL specifications allow the detection
of conflicts between different scenarios and allow scenarios to be merged
in a justified way. Note that not every message needs to be given a
specification, although, clearly, the more semantic information that is
supplied, the better the quality of the conflict detection. Currently, our
algorithm only exploits constraints of the form var = value, but there
may be something to be gained from reasoning about other constraints
using an automated theorem prover or model checker.

Figure 1.7 gives specifications for selected messages in our agents ex-
ample. Agent.coordWith has type Agent (it is the agent which is coor-
dinating with Agent), and Agent . coordNum, the number of agents Agent
is coordinating with, is a new variable introduced as syntactic sugar.

The state variables, in the form of a state vector, are used to char-
acterize states in the generated statechart. The state vector is a vector
of values of the state variables. In our example, the state vector for the
class coordinate has the form:

(coordNum™, leader”, coordGoal”)

where var” € Dom(var) U{?}, and ? represents an unknown value. Note
that since each class has a statechart, each class has its own state vector.

Our algorithm is designed to be fully automatic. The choice of the
state vector, however, is a crucial design task that must be carried out

14

coordNum : enum {0,1}
leader : Boolean
coordGoal : enum {park, boxToShelf, shelfToRamp}

context Agent.coordinate::grantCoord
pre: coordNum = O and coordWith.coordinate.coordNum = 0

1]
[ury

post: coordNum = 1 and coordWith.coordinate.coordNum

context sendGoal(x : enum {park, boxToShelf, shelfToRamp})
post: coordWith.coordinate.coordGoal = x

context electLeader
pre: leader = false

context isLeader
post: coordWith.coordinate.leader = true

context endCoord
pre: coordNum = 1 and coordWith.coordinate.coordNum = 1

1]
o

post: coordNum = O and coordWith.coordinate.coordNum
and leader = false

Figure 1.7. Domain Knowledge for the Loading Dock Example

by the user. The choice of state variables will affect the generated stat-
echart, and the user should choose state variables to reflect the parts
of the system functionality that is of most interest. In this way, the
choice of the state vector can be seen as a powerful abstraction mech-
anism — indeed, the algorithm could be used in a way that allows the
user to analyze the system from a number of different perspectives, each
corresponding to a particular choice of state vector.

The state variables can be chosen from information present in the
class diagram. For instance, in our example, the state variables are
either attributes of a particular class or based on associations. The
choice is still a user activity, however, as not all attributes/associations
are relevant.

4. Generating Statecharts

Synthesis of statecharts is performed in four steps: first, each SD
is annotated with state vectors and conflicts with respect to the OCL
specification are detected. In the second step, each annotated SD is con-
verted into flat statecharts, one for each class in the SD. The statecharts
for each class, derived from different SDs, are then merged into a single
statechart for each class. Finally, hierarchy is introduced in order to
enhance readability of the synthesized statecharts.

Scenario-based Engineering of Multi-agent Systems 15

4.1 Step I: Annotating Sequence Diagrams with
State Vectors

The process to convert an individual SD into a statechart starts by de-
tecting conflicts between the SD and the OCL specification (and hence,
other SDs). There are two kinds of constraints imposed on a SD: con-
straints on the state vector given by the OCL specification, and con-
straints on the ordering of messages given by the SD itself. These con-
straints must be solved and conflicts be reported to the user. Conflicts
mean that either the scenario does not follow the user’s intended seman-
tics or the OCL specification is incorrect.

More formally, the process of conflict detection can be written as
follows. An annotated sequence diagram is a sequence of messages
mi,..., My, with

pre mi1_ _post pre M2 Mr—1 post _pre ™Mr post
sy s sy = L shy, 8P =D sP (1.1)
€ ost . .
where the s, sP°" are the state vectors immediately before and after

. . . € ost
message m; is executed. S; will be used to denote either sP™ or sf ;

7
P'®[j] denotes the element at position j in s (similarly for sP°).

In the first step of the synthesis process, we assign values to the vari-
ables in the state vectors as shown in Figure 1.8. The variable instanti-
ations of the initial state vectors are obtained directly from the message
specifications (lines 1-5): if message m; assigns a value y to a variable
of the state vector in its pre- or post-condition, then this variable as-
signment is used. Otherwise, the variable in the state vector is set to an
undetermined value, 7. Since each message is specified independently,
the initial state vectors will contain a lot of unknown values. Most (but
not all) of these can be given a value in one of two ways: two state
vectors, S; and S; (¢ # j), are considered the same if they are unifiable
(lines 7-8). This means that there exists a variable assignment ¢ such
that ¢(S;) = ¢(S;). This situation indicates a potential loop within a
SD. The second means for assigning values to variables is the application
of the frame axiom (lines 9-12), i.e., we can assign unknown variables of
a pre-condition with the value from the preceding post-condition, and
vice versa. This assumes that there are no hidden side-effects between
messages.

A conflict (line 14) is detected and reported if the state vector imme-
diately following a message and the state vector immediately preceding
the next message differ.

Example. Figure 1.9 shows SD2 from Figure 1.3 annotated with state
vectors for Agent[i]: : coordinate. Figure 1.10 shows how the state vec-
tors are propagated.

S

16

Input. An annotated SD
Output. A SD with extended annotations

1 for each message m; do

2 if m; has a precondition v; =y

3 then sP[j]:=yelse sP[j]:=71fi
4 if m; has a postcondition v; =y

5 then sP°'[j] =y else s£°'[j]:=7fi

6 for each state vector S do
7 if 38" S’ £ S and some unifier ¢ with ¢(S) = ¢(S’) then

8 unify S; and S;

9 propagate instantiations with frame axiom:
10 for each jandi>0:
11 if sfre[j] =7 then P[] := sP%'[j] fi
12 if sP°'[j] =7 then s'*'[j] := sP°[j] fi
13 if there is some k, [with sp[1] # speqll] then
14 Report Conflict;
15 break;

Figure 1.8. Extending the state vector annotations.

4.2 Step II: Translation into a Finite State
Machine

Once the variables in the state vectors have been instantiated as far as
possible, a flat statechart (in fact, a finite state machine) is generated for
each class (or agent) in each SD (Figure 1.11). The finite state machine
for agent A is denoted by ®4; its set of nodes by N4; its transitions
by (n1, (type,label),ne) for nodes ni, no where type is either event or
action?; and p4 is a function mapping a node to its state vector. Cy4
denotes the currently processed node during the run of the algorithm.
Messages directed towards a particular agent, A (i.e., ml® = A) are
considered events in the FSM for A. Messages directed away from A

f

(i.e., m; "™ — A) are considered actions.

The algorithm for this synthesis is depicted in Figure 1.11. Given
a SD, the algorithm constructs one FSM for each agent (or for each
class, in case we consider agents consisting of objects) mentioned in the
sequence diagram. We start by generating a single starting node n%i
for each FSM (line 2). Then we successively add outgoing and incoming
messages to the FSMs, creating new nodes as we proceed (lines 4-5).

An important step during FSM creation is the identification of loops
(lines 10-13): a loop is detected if the state vector immediately after

Scenario-based Engineering of Multi-agent Systems 17

Agent[i]:: Agent[i]:: Agent[i]:: Agent[j]::
coordinate planning reactive coordinate

encounterAgent(j,p)

encounterAgent(j,p)

requestCoord
grantCoord

<0, ?, ?>

<1,?,?7>
sendGoal (park)

sendGoal (boxTaShelf)

<?, ?, boxToShel f >

<?,f,?>
D electleader()
isLeader

<?,t,?>
moveAround
IF{orient=e and nFree()=trug]
turn(left)
moveAhead(
turn(right)
gotoL andmark(p)
<1,7?,?> endCoord
<0, f,?>

Figure 1.9. SD2 (parts) with state vectors (coordNum™, leader”, coordGoal”).

the current message has been executed is the same as an existing state
vector and if this message is state-changing, i.e., s?® # sP°*. Note that
some messages may not have a specification, hence they will not affect
the state vector. To identify states based solely on the state vector would
result in incorrect loop detection.

4.3 Step III: Merging multiple Sequence
Diagrams

The previous steps concerned the translation of a single SD into a
number of statecharts, one for each class. Once this is done for each SD,
there exists a collection of flat statecharts for each class. We now show
how the statecharts for a particular class can be merged.

Merging statecharts derived from different SDs is based upon identi-
fying similar states in the statecharts. Two nodes of a statechart are

18

Agentl[i]:: Agent[i]:: Agentl[i]:: Agentf[j]::
coordinate planning reactive coordinate
L_encounterAgent(j,p)
encounterAgent(j,p)
requestCoord
<0, f, boxToShel f > arantCoord
<1, f, boxToShel f >
sendGoal (park)
sendGoal (boxToShelf)

<1, f, boXToShel f >

<1, f, bo el f>
ﬁ electLeader()
isL eader

<1, t, boxXToShel f >
moveAround

IF[orient=e and nFree()=true]
turn(l eft)

moveAhead()

turn(right)

gotoL andmark(p)

e mmm oo
|

<1,t, boxToShel f > endCoord

<0, f, boxToShel f >

Figure 1.10. SD2 after extension of state vector annotations with state vectors for
Agent[i]: :coordinate

similar if they have the same state vector and they have at least one
incoming transition with the same label. The first condition alone would
produce an excessive number of similar nodes since some messages do
not change the state vector. The existence of a common incoming tran-
sition which we require in addition means that in both cases, an event
has occurred which leaves the state variables in an identical assignment.
Hence, our definition of similarity takes into account the ordering of the
messages and the current state. Figure 1.12 shows how two nodes with
identical state vector S and incoming transitions labeled with [can be
merged together.

The process of merging multiple statecharts proceeds as follows: we
generate a new statechart and connect its initial node by empty e-
transitions with the initial nodes of the individual statecharts derived
from each SD. Furthermore, all pairs of nodes which are similar to each

Scenario-based Engineering of Multi-agent Systems 19

Input. A SD, S, with agents Ay,..., Ax and messages m1,...,m,
Output. A FSM @4, for each agent, 1 <7 <Kk.

1 fori=1,...,k do
Create a FSM, ® 4,, with an initial node, n%i; Ca, = n%i;
fori=1,...,r do

ADD(m;, action, mI™™);

2

3

4 i ;

5 ADD(m;, event, mi®);

6 where ADD(mess m;, type t, agent A)

7 if there is a node n € N4, a transition (Ca, (t,m;),n)
8 and sP°*" = p14(n) then

9

Cq:=mn;
10 else if there is n € N4 with sP° = ya(n)
11 and m; is state-changing then
12 add new transition (C4, (t,m;),n);
13 Cq:=mn;
14 else
15 add a new node n and let pa(n) := sP°;
16 add transition (Ca, (t,m;), n);
17 Ca:=m;

Figure 1.11. Translating a sequence diagram into FSMs.

] [«

=] L]

Figure 1.12. Merging of similar states (before and after the merge). .

other are connected by e-transitions. Then we remove e-transitions, and
resolve many non-deterministic branches. For this purpose, we use an
algorithm which is a variant of the standard algorithm for transforming a
non-deterministic finite automaton into a deterministic finite automaton
(Aho et al., 1986). The output of the algorithm is only deterministic in
that there are no e-transitions remaining. There may still be two transi-
tions leaving a state labelled with the same events but different actions.
Hence, our algorithm may produce non-deterministic statecharts, which
allows a designer to refine the design later.

20

4.4 Step IV: Introducing Hierarchy

So far, we have discussed the generation of flat finite state machines.
In practice, however, statechart designs tend to get very large. Thus, the
judicious use of hierarchy is crucial to the readability and maintainabil-
ity of the designs. Highly structured statecharts do not only facilitate
clean presentation of complex behavior on the small computer screen,
but also emphasize major design decisions. Thus, a clearly structured
statechart is easier to understand and refine in an iterative design pro-
cess. Our approach provides several ways for introducing hierarchy into
the generated FSMs. In this chapter, we will discuss methods which
use information contained in the state vectors, in associated UML class
diagrams, or explicitly given by the user (in the form of preferences and
extended sequence diagrams).

4.4.1 The State Vector as a Basis for Hierarchy.

State variables usually encode that the system is in a specific mode
or state (e.g., agent is the leader or not). Thus, it is natural to partition
the statechart into subcharts containing all nodes belonging to a specific
mode of the system. More specifically, we recursively partition the set of
nodes according to the different values of the variables in the state vec-
tors. In general, however, there are many different ways of partitioning
a statechart, not all of them suited for good readability. We therefore
introduce additional heuristic constraints (controlled by the user) on the
layout of the statechart:

The maximum depth of hierarchy (d;.;): Too many nested levels
of compound states limit readability of the generated statechart.
On the other hand, a statechart which is too flat will contain very
large compound nodes, making reading and maintaining the stat-
echart virtually impossible.

The maximum number of states on a single level (Npqz(d)):
This constraint is somewhat orthogonal to the first one and also
aims at generating “handy” statecharts.

The maximum percentage of inter-level transitions: Transitions
between different levels of the hierarchy usually limit modularity,
but occasionally they can be useful. Thus their relative number
should be limited (usually to around 5-10%).

A partial ordering over the state variables (<): This ordering de-
scribes the sequence in which partitions should be attempted. It

Scenario-based Engineering of Multi-agent Systems 21

provides a means to indicate that some state variables may be
more “important” than others and thus should be given priority.
This ordering encapsulates important design decisions about how
the statechart should be split up.

In general, not all of the above constraints can be fulfilled at the same
time. Therefore our algorithm has the capability to do a search for an
optimal solution. This search is done using backtracking over different
variable sequences ordered with respect to <.

The process of structuring a given subset S of the nodes of a generated
FSM is shown in Figure 1.13. Given a subset of variables W of the state
vector over which to partition and a (partial) ordering < , a sequence
W' is constructed with respect to the ordering <. Then the nodes S
are partitioned recursively according to the variable sequence W'. Let
v;j be the top-level variable (minimal in W') on which to split (line 11).
The partition is made up of m equivalence classes corresponding to each
possible value of v; given in the SDs. Before we actually perform the
split, we check if the constraints hold (lines 10 and 16). Only then is the
set of nodes split and the algorithm descends recursively (line 17). After
all node sets have been partitioned, we levelwise assemble all non-empty
partitions (line 19). Once this algorithm terminates, we check if it is a
“good” hierarchy with respect to our criteria (line 21). Because some
of the constraints (e.g., number of interlevel transitions) can only be
checked globally, we have to perform these tests after the partitioning.

In case the partition does not meet our design criteria described, a

warning will be issued that the given ordering would result in a non-
optimal hierarchy and a new ordering of the variables is selected. This
selection is done until the criteria are met.
Example. Figure 1.14 gives a partitioned statechart for agent com-
munication generated from SD1, SD2 and SD3. The flat statechart was
first split over coordNum, followed by leader and finally coordGoal (i.e.
coordNum < leader < coordGoal).

4.4.2 Extended Sequence Diagrams.

Other authors (Gehrke and Firley, 1999; Breu et al., 1998) have al-
ready noted that the utility of sequence diagrams to describe system
behavior could be vastly increased by extending the notation. A ba-
sic SD supports the description of ezemplary behavior — one concrete
interaction — but when used in requirements engineering, a generative
style is more appropriate, in which each SD represents a collection of
interactions. Extensions that have been suggested include the ability
to allow case statements, loops and sub-SDs. We go further than this

22

Input. A FSM with nodes N, state vector mapping, i, ordering < over
a subset W C V of the state variables, and subset of N, S C N.
Output. A partitioning P of the FSM

1 W' = (vi,...,v) for v; € W and v; < vj, © < j; ok := TRUE;
2 do
3 P := PARTITION(S, W', 1); // partition this set
4 while -0k A =OPTIMAL(P) do
5 ok := TRUE;
6 W' := select-new-variable-ordering(W);
7 P := PARTITION(S, W');
8 done
9 where PARTITION(S, W', d)
10 if(d > dmaz N |S| < Npmin(d)) ok := FALSE;

11 v; = first(W'); // split on first var. in W'
12 Dslv;) = UAn()lilh

S€
13 m:=|Dg(vj)l; // m is number of partitions
14 for 1<i<mdo // on the current level

15 Si = {s € S| u(s)[j] = ith(Ds(vj))};
16 if(|Si| > Nmaz(d)) ok := FALSE;

17 P; := PARTITION(S;, rest(W')); // call the partitioning
18 done // recursively
19 P=PFP;i#()) // assemble result

20 where OPTIMAL(P)
21 check P according to our design criteria

Figure 1.13. Sketch of algorithm for partitioning over the state vector
and advocate the use of language constructs that allow behavior to be
generalized. Example constructs we have devised so far include:

» any_order(mi,...,my): specify that a group of messages may oc-
cur in any order;

= or(my,...,my,): a message may be any one of a group of messages;

» generalize(m, SubSD): a message gives the same behavior when
sent /received at any point in the sub-sequence diagram;

» qlllnstances(m, I): send a message to all instances in I;

These constructs also suggest ways of introducing structure into the
generated statecharts. As an example, any_order(mq,..., my) can be
implemented by n concurrent statecharts (see Figure 1.15), connected
by the UML synchronization operator (the black bar) which waits until

Scenario-based Engineering of Multi-agent Systems 23

(N
coordNum=0 C}WithdrawRet/ Iwithdraw C{. s
. isLeader
encounterAgent(j.p) coordGoal=shelfToRamp
. moveA foundRet/ /moveAround() /. B
o endoord [3 C]
?lf,f.ﬁqpm, ‘ :1 coordGoal=boxToShelf
L leader=true)
(N
grantCoord/ /sendGoal (boxTashelf)
dGoal (shelf TgRamp)/
JsengGoal (Park) electleader()
tm(5)/endCoord dGoal (boxToShelf)/
e er()
isl_eader/
L leader=false)
/ coordNum=1

Figure 1.14. Hierarchical Statechart for Agent::coordinate.

all its source states are entered before its transition is taken. This is
particularly useful if mq,...,m, are not individual messages, but sub-
sequence diagrams. Figure 1.15 also shows how the other constructs
mentioned above can be implemented as statecharts. alllnstances is
implemented by a local variable that iterates through each instance,
and sends the message to that instance.
Example. These extensions of the SDs are convenient if, for example,
our agent design requires an emergency shutdown. When activated, it
sends the message emergency to each agent. This can be expressed as
allInstances(emergency,Agent::coordinate). If an agent is coordinating
with other agents (regardless if it is the leader or not), a fail-safe state
needs to be entered. Such a behavior is shown in Figure 1.16 and has
been expressed conveniently as generalize(emergency, (SD-describing-
the-coordinated-behavior)). This specification makes a number of se-
quence diagrams superfluous in which the emergency message is received
in different situations.

Similarly, in situations where several parts of an interagent commu-
nication require no specific order, a compact way of specification can be
used, for example, any_order(inquire_box_color, inquire_box _size).

24

TR
L 4 R A
ayorder |) \Q

generalize all I\nstances
.\ .
O D [i<=n]/
m—gﬁi +1
O

n=l->size, i=1

m

Figure 1.15. Hierarchy by Macro Commands

4.4.3 Class Diagrams.

During the synthesis process, it is also important to incorporate other
design decisions made by the developer. Within the UML framework, a
natural place for high-level design decisions is the class diagram. It de-
scribes the types of the objects in the system and the static relationships
among them.

A hierarchical structure of a generated statechart can easily be ob-
tained from the class diagram: the outermost superstate (surmounting
the entire statechart) corresponds to the class node of the corresponding
object. Aggregation results in a grouping of nodes. If a class contains
several sub-classes, the statecharts corresponding to the sub-classes are
sub-nodes of the current node.

This way of introducing structure is somewhat higher-level than the
first two. Typically, the class diagram can be used to obtain a very ab-
stract structure and the method described above (using state cariables)
can be used to introduce further structure within each subchart.

Scenario-based Engineering of Multi-agent Systems 25

coordNum=0

~
withdrawRet/ Jwithdraw Cj) L
O e

encounterAgent(j.p)/ coordGoal = shelfToRamp
requestCoord

oundRet/ /moveAround() /

moveA I I
o ‘ ehd :roord (>r—+{)
requesiCoar coordGoal=boxToShelf
L leader=true |
(7
grantCoord/ JsendGoal (boxToshelf)
dGoal (shelf TQRamp)/
JsendiGoal (Park) electl eader()
tm(5)/endCoord sendGoal (boxToShelf)/
el er()
{ } emergency/shutdpwn isl-eader/
L leader=false)
/ coordNum=1

J

Figure 1.16. Hierarchical Statechart for Agent::coordinate with emergency handling
(extension of Figure 1.14)

4.5 Statechart Layout and Hierarchy

For practical usability and readability of the synthesized statechart,
a good layout is extremely important. Only then can automatic gen-
eration of agent designs and skeletons be accepted by the practition-
er. Our current prototype system does not provide sophisticated layout
generation®. There is a substantial body of work on automatic layout
of graphs (e.g., (Battista et al., 1999)). In particular, (Castellp et al.,
2000a) has developed algorithms for automatic positioning of the ele-
ments of a hierarchical statechart on the canvas.

Generation of a graph layout is subject to a number of constraints.
The most important constraints concern spacing of the graph nodes
(how much space does each element require?), routing of the transitions
and labeling. A good layout prescribes that the arrows, representing
transitions don’t cross nodes and other transitions too often. On the
other hand, transitions which are too long (e.g., moving around several
nodes) reduce readability. Furthermore, the layout algorithm has to take
into account that labels on the transitions must be placed carefully such

26

that they do not overlap. For our tool, we are investigating algorithms
like (Castellg et al., 2000a; Castellg et al., 2000b), techniques coming
from VLSI design (Bhatt and Leighton, 1984) and layout/labeling of
topographical maps.

4.6 Multi-View Design

The automatic introduction of hierarchy provides another benefit:
multiple views on the design. Since all important information is al-
ready contained in the flat statechart, changing hierarchy and layout
does not affect the behavior of the system. Therefore, the user can, as
described above, set individual preferences on how to structure and dis-
play the design. This feature opens up the possibility to keep multiple
different hierarchies of the same design within the system at the same
time. So, for example, different software engineers, working on different
aspects of the agent could work with different hierarchies. Each design-
er would select a hierarchy which displays his/her focus of interest in a
compact way (e.g., on top of the hierarchy in a single supernode). Al-
so, during different stages of the software cycle, different hierarchies can
be suitable, e.g., for design, for generation of test cases (e.g., involving
the specific values of the state variables), or for debugging (Schumann,
2000). This multi-hierarchy approach exhibits some similarities to defin-
ing views in a relational database or individual formatting options within
a word-processor.

5. Discussion:Reverse Engineering of Agent
Communication Protocols

Section 4 described the use of scenarios in forward engineering agent-
based systems. As described in the Introduction, however, scenarios
can also be utilized in reverse engineering. In practical software engi-
neering, legacy code often exists which has to be integrated into a new
system. However, in many cases, the code is poorly documented. Before
modification or integration of the code can be attempted, reverse engi-
neering needs to be performed, in order to understand how that piece
of code works — a time-consuming task. In particular, for agent-based
systems, understanding the operation of distributed pieces of software is
particularly troublesome.

In the framework of transforming requirements into designs presented
in this chapter, reverse engineering is also supported. Given a software
artifact that can be executed, the code is run on a number of relevant test
cases. In general, such test cases give only the input/output behavior
of the code and not the internal execution steps. By instrumenting the

Scenario-based Engineering of Multi-agent Systems 27

code to output internal information (e.g., messages between objects or
communication acts between agents), each test case can be associated
with an execution trace which is written to a log file. These execution
traces are scenarios of the internal behavior of the software, and, as
such, they can be used as input to the synthesis algorithm described
in Section 4. The result is a hierarchical statechart model representing
some part of the internal behavior of the code. This model can be
used in code understanding or in exploring design extensions. Note that
the model obtained depends entirely on the set of test cases that are
run. In this way, the user can selectively choose to extract a slice of the
overall system model depending on which aspect of the system is of most
interest. This technique of using scenarios in reverse engineering can also
be used when the source code is not available. It depends only on the
capability to execute the code. Figure 1.17 summarizes this procedure.

TEST CASES (input/output)

Software Iterate
artifact

(instrumented to output
communications)

Event traces
(sequence diagrams)

synthesis

algorithm
statechart model
of software artifact

Figure 1.17. Extracting Behavioral Models of Agent Systems using Scenarios

For this approach to work in practice, a number of important issues
need to be addressed. In what follows, P will abbreviate the existing
software artifact and 7 will stand for the set of execution traces produced
by the instrumented code.

® P must be instrumented so that the appropriate scenarios can be
collected from the executions of each test case. In initial experi-
ments, existing Java code is being reverse engineered. Whilst, in
general, code that needs to be reverse engineered is probably lega-
cy code from decades ago (e.g., written in COBOL), it is likely

28

that code in agent-based systems will often be written in Java.
The need to re-engineer such Java code may arise from the need
to observe an agent-based system in operation or to integrate an
agent component that has been obtained from a possibly unreliable
source (e.g., the Internet). Java object code can be instrumented
easily using the Jtrek tool (Compaq, 2001) which does not require
the source code to be available.

m The approach is likely to succeed when re-engineering object-ori-
ented code because it is then straightforward to set up the classes
appropriately in the sequence diagrams (execution traces). This
class structure will not be available in non-object oriented code,
however, so a substantial amount of manual work would have to
be done in order to obtain reasonable traces.

m The traces 7 are obtained by running the instrumented code on
various sequences of input. It is only these test inputs that are
represented in the behavioral model generated. On the positive
side, this gives the user an easy way of extracting from the code
only the information in which (s)he is interested. On the negative
side, the model generated will be incomplete. By using traditional
techniques to generate test cases with a certain coverage, however,
the model can be shown also to possess a certain coverage.

m A realistic system might produce a huge amount of different traces.
These, however, might represent small variants of a few traces.
Therefore, traces need to be abstracted before they can be used
for synthesizing a new statechart. As an example, in the loading
dock domain, an agent may rotate by n degrees. For the purposes
of modeling, however, only the principal directions e, w, n and
s are relevant and so the execution traces must be abstracted in
order to avoid overly detailed models.

m Given the set of traces 7, for maximum effectiveness, OCL con-
straints should be set up. This is most likely a manual activity,
although it may be possible to partially automate the selection of
state variables by instrumenting the code appropriately.

Our work on the reverse engineering aspect is at an early stage. Initial
results, however, have shown that there is a great deal of potential in
this technique.

Scenario-based Engineering of Multi-agent Systems 29

6. Conclusions

This chapter has presented an algorithm for automatically synthe-
sizing UML statecharts from a set of sequence diagrams. For the de-
velopment of large-scale agent-based systems, sequence diagrams can
be a valuable means to describe inter-agent communication. Sequence
diagrams can be extended with additional language constructs to en-
able generalizations and can be augmented with communication pre-
and post-conditions in OCL. This enables the automatic detection and
reporting of conflicts and inconsistencies between different sequence di-
agrams with respect to the pre/post-condition constraints. These an-
notations are furthermore used in the synthesis algorithm to correctly
identify similar states and to merge a number of sequence diagrams into
a single statechart. In order to make the algorithm practical, techniques
for introducting hierarchy automatically into the generated statechart
are employed.

A prototype of this algorithm has been implemented in Java and so
far used for several smaller case-studies in the area of agent-based sys-
tems, classical object-oriented design (Whittle and Schumann, 2000),
and human-computer interaction. In order to be practical for applica-
tions on a larger scale, the algorithm is being integrated into state-of-
the-art UML-based design tools by way of an XMI interface.

This chapter has also discussed a novel application of the synthesis
algorithm in the reverse engineering of existing systems. By simulating
an agent-based system on a number of test cases, and instrumenting
the code to output appropriate execution traces, these traces can be
used as input to the synthesis algorithm and a behavioral model of the
software can be extracted. This technique could have applications in
understanding existing systems for which documentation no longer exists
or which have been obtained by a possibly unreliable means (e.g., the
Internet).

The synthesis algorithm presented in this chapter only describes the
forward or synthesis part of the design cycle: given a set of sequence dia-
grams, we generate a set of statecharts. For full support of our method-
ology, research and development in two directions are of major impor-
tance: conflicts detected by the algorithm must not only be reported in
an appropriate way to the designer but also should provide explanation
on what went wrong and what could be done to avoid this conflict. We
will use techniques of model-generation, abduction, and deduction-based
explanation generation to provide this kind of feedback.

The other major strand for providing feedback is required when the
user, after synthesizing the statechart, refines it or makes changes to

30

the statechart. In that case, it must be checked if the current state-
chart still reflects the requirements (i.e., the sequence diagrams), and in
case it does, must update the sequence diagrams (e.g., by adding new
communication acts).

The question whether UML (or AUML) is an appropriate method-
ology for the design of large-scale agent-based systems must still be
answered. A part of the answer lies in the availability of powerful tools
which support the development of agents during all phases of the itera-
tive life-cycle. We are confident that our approach to close the gap be-
tween requirements modeling using sequence diagrams and design with
statecharts will increase acceptability of UML methods and tools for the
design of agent-based systems.

Acknowledgments

This work is supported by the NASA, grant 749-10-11 (Thinking
Systems / Program Synthesis). We also want to thank the anonymous
referees for their helpful suggestions.

Notes

1. tmis a timeout

2. In statecharts, a transition is labeled by e/a which means that this transition can be
active only if event e occurs. Then, the state changes and action a is carried out. We use a
similar notion in our definition of FSMs.

3. For visualization of the synthesized statechart we are using the tools Dot (Koutsofios
and North, 1996) and daVinci (Frohlich and Werner, 1994).

References

Aho, A., Sethi, R., and Ullman, J. (1986). Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley series in Computer Science. Addison-
Wesley.

AUML (2001). Agent UML. http://wuw.auml.org.

Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. (1999). Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall.
Bhatt, S. N. and Leighton, F. T. (1984). A Framework for Solving VLSI

Graph Layout Problems. J. Comp. Syst. Sci., 28:300-343.

Biermann, A. and Krishnaswamy, R. (1976). Constructing Programs
from Example Computations. IEEE Transactions on Software En-
gineering, SE-2(3):141-153.

Bradshaw, J. (1997). Software Agents. American Association for Artifi-
cial Intelligence / MIT Press.

Breu, R., Grosu, R., Hofmann, C., Huber, F., Kriiger, I., Rumpe, B.,
Schmidt, M., and Schwerin, W. (1998). Exemplary and Complete Ob-
ject Interaction Descriptions. In Computer Standards and Interfaces,
volume 19, pages 335-345.

Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez, J., Pavon,
J., Kearney, P., Stark, J., and Massonet, P. (2001). Agent oriented
analysis using MESSAGE/UML. In Ciancarini, P. and Wooldridge,
M., editors, Agent Oriented Software FEngineering, pages 101-108,
Berlin. Springer-Verlag.

Castellg, R., Mili, R., and Tollis, I. G. (2000a). An algorithmic frame-
work for visualizing statecharts. In Marks, J., editor, Graph Drawing,
volume 1984 of LNCS, pages 139-149. Springer-Verlag.

Castellg, R., Mili, R., Tollis, I. G., and Benson, V. (2000b). On the auto-
matic visualization of statecharts: The vista tool. In Formal Methods
Tools 2000.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.,
and Jeremaes, P. (1994). Object-Oriented Development: the FUSION
Method. Prentice Hall International.

Compaq (2001). Jtrek. http://www.compaq.com/java/download/ jtrek.

31

32

Frohlich, M. and Werner, M. (1994). Demonstration of the interactive
graph-visualization system davinci. In Tamassia, R. and Tollis, I. G.,
editors, Graph Drawing, volume 894 of Lecture Notes in Computer
Science, pages 266-269. DIMACS, Springer-Verlag.

Gehrke, T. and Firley, T. (1999). Generative sequence diagrams with
textual annotations. In Spies and Schitz, editors, Formale Beschrei-
bungstechniken fir verteilte Systeme (FBT99) (Formal Description
Techniques for Distributed Systems), pages 65-72, Miinchen.

Glinz, M. (1995). An integrated formal model of scenarios based on stat-
echarts. In 5th European Software Engineering Conference (ESEC),
volume 989 of Lecture Notes in Computer Science, pages 254-271,
Springer-Verlag.

Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231-274.

Khriss, I., Elkoutbi, M., and Keller, R. (1999). Automating the synthesis
of UML statechart diagrams from multiple collaboration diagrams. In
Bezivin, J. and Muller, P., editors, UML9S8: Beyond the Notation,
volume 1618 of LNCS, pages 139-149. Springer-Verlag.

Koutsofios, E. and North, S. (1996). Drawing graphs with dot. Technical
report, AT&T Bell Laboratories, Murray Hill, NJ, USA.

Leue, S., Mehrmann, L., and Rezai, M. (1998). Synthesizing software
architecture descriptions from Message Sequence Chart specifications.
In Proc. Thirteenth International Conference on Automated Software
Engineering, pages 192-195, IEEE Press.

Maénnisto, T., Systd, T., and Tuomi, J. (1994). SCED report and us-
er manual. Report A-1994-5, Dept of Computer Science, Universi-
ty of Tampere. ATM example available with the SCED tool from
http://www.cs.tut.fi/ tsysta/sced/.

Miiller, J. (1996). The Design of Intelligent Agents. volume 1177 of
LNALI Springer-Verlag.

Odell, J., Van Dyke Parunak, H., and Bauer, B. (2001). Representing
Agent Interaction Protocols in UML. In Ciancarini, P. and Wooldridge,
M., editors, Agent Oriented Software Engineering, volume 1957 of
LNCS, pages 121-140. Springer-Verlag.

OMG (2001). Unified Modeling Language specification version 1.4. Avail-
able from The Object Management Group (http://wuw.omg.org).

Rao, A. S. and Georgeff, M. P. (1995). BDI Agents: From Theory to
Practice. In Lesser, V., editor, Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS’95), pages 312-319. The
MIT Press.

Rosenberg, D. and Scott, K. (1999). Use Case Driven Object Modeling
with UML. Object Technology Series. Addison Wesley.

REFERENCES 33

SBSE (2000). Workshop on scenario-based round trip engineering.
http://www.cs.uta.fi/ " cstasy/oopsla2000/workshop.html.

Schumann, J. (2000). Automatic debugging support for uml designs. In
Ducasse, M., editor, Proceedings of the Fourth International Workshop
on Automated Debugging. http://xxx.lanl.gov/abs/cs.SE/0011017.

Singh, M. (1998a). A customizable coordination service for autonomous
agents. In Intelligent Agents IV: jth International Workshop on Agent
Theories, Architectures, and Languages.

Singh, M. (1998b). Developing formal specifications to coordinate het-
erogeneous autonomous agents. In International Conference on Multi
Agent Systems, pages 261-268.

Somé, S. and Dssouli, R. (1995). From scenarios to timed automata:
building specifications from users requirements. In Asia Pacific Soft-
ware Engineering Conference, pages 48-57.

Systa, T. (2000). Incremental construction of dynamic models for object
oriented software systems. Journal of Object Oriented Programming,
13(5):18-27.

van Lamsweerde, A. (1998). Inferring declarative requirements specifi-
cations from operational scenarios. IEEE Transactions on Software
Engineering, 24(12):1089-1114.

Warmer, J. and Kleppe, A. (1999). The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley Object Technology Se-
ries. Addison-Wesley.

Whittle, J. and Schumann, J. (2000). Generating Statechart Designs
From Scenarios. In Proceedings of International Conference on Soft-
war e Engineeering (ICSE 2000), pages 314-323, Limerick, Ireland.

Wooldridge, M. and Ciancarini, P. (2001). Agent-oriented software en-
gineering: The state of the art. In Handbook of Software Engineering
and Knowledge Engineering. World Scientific Publishing Co.

Wooldridge, M. and Jennings, N. (1995). Intelligent agents: Theory and
Practice. The Knowledge Engieering Review, 10(2):115-152.

Wooldridge, M., Jennings, N., and Kinny, D. (1999). A methodology for
agent-oriented analysis and design. In Third International Conference
on Autonomous Agents (Agents 99), pages 69-76, Seattle, WA.

